

A241544


Number of partitions p of n such that (number of even numbers in p) is a part of p.


2



0, 0, 0, 1, 1, 3, 5, 7, 12, 17, 26, 34, 49, 66, 90, 118, 155, 203, 261, 337, 428, 546, 685, 863, 1075, 1345, 1664, 2060, 2538, 3118, 3816, 4661, 5680, 6901, 8368, 10111, 12207, 14690, 17656, 21155, 25326, 30238, 36058, 42901, 50973, 60438, 71568, 84586
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

Each number in p is counted once, regardless of its multiplicity.


LINKS

Table of n, a(n) for n=0..47.


EXAMPLE

a(6) counts these 5 partitions: 42, 411, 321, 2211, 21111.


MATHEMATICA

z = 50; f[n_] := f[n] = IntegerPartitions[n]; s0[p_] := Count[Mod[DeleteDuplicates[p], 2], 0]; s1[p_] :=
Count[Mod[DeleteDuplicates[p], 2], 1];
Table[Count[f[n], p_ /; MemberQ[p, s0[p]]], {n, 0, z}] (* A241544 *)
Table[Count[f[n], p_ /; MemberQ[p, s1[p]]], {n, 0, z}] (* A241545 *)


CROSSREFS

Cf. A241545.
Sequence in context: A070334 A137700 A325267 * A208716 A195821 A208772
Adjacent sequences: A241541 A241542 A241543 * A241545 A241546 A241547


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Apr 26 2014


STATUS

approved



