login
A241528
Primes p such that p + 1234567890 is also prime where 1234567890 is the first pandigital number with digits in order.
1
17, 23, 37, 59, 131, 139, 157, 199, 241, 311, 353, 359, 397, 433, 479, 547, 673, 691, 769, 877, 937, 947, 953, 1051, 1091, 1097, 1181, 1297, 1301, 1409, 1451, 1471, 1489, 1531, 1609, 1619, 1697, 1709, 1861, 1879, 1889, 1913, 1951, 2053, 2063, 2089, 2099, 2113
OFFSET
1,1
LINKS
EXAMPLE
17 is prime and appears in the sequence because 17 + 1234567890 = 1234567907, which is also prime.
23 is prime and appears in the sequence because 23 + 1234567890 = 1234567913, which is also prime.
19 is prime but not included in the sequence since 19 + 1234567890 = 1234567909 = (59107)*(20887), which is not prime.
MAPLE
KD := proc() local a, k; k:=ithprime(n); a:=k+1234567890; if isprime(a) then RETURN (k); fi; end: seq(KD(), n=1..1000);
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[p+1234567890], AppendTo[lst, p]], {n, 1, 1000}]; lst
(* For the b-file *) c=0; k=Prime[n]; a=k+1234567890; Do[If[PrimeQ[a], c++; Print[c, " ", k]], {n, 1, 10^5}]
Select[Prime[Range[400]], PrimeQ[#+1234567890]&] (* Harvey P. Dale, Nov 18 2021 *)
PROG
(PARI) s=[]; forprime(p=2, 3000, if(isprime(p+1234567890), s=concat(s, p))); s \\ Colin Barker, Apr 25 2014
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 25 2014
STATUS
approved