OFFSET
0,5
EXAMPLE
a(6) counts these 2 partitions: 51, 2211.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == 1 &]]];
Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, Length[p] - Count[p, 1]]], {n, 0, z}] (* A241511 *)
Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, Length[p] - Count[p, 1]] ], {n, 0, z}] (* A241512 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, Length[p] - Count[p, 1]] ], {n, 0, z}] (* A241513 *)
Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, Length[p] - Count[p, 1]] ], {n, 0, z}] (* A241514 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, Length[p] - Count[p, 1]] ], {n, 0, z}] (* A241515 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 24 2014
STATUS
approved