OFFSET
1,1
LINKS
K. D. Bajpai, Table of n, a(n) for n = 1..510
EXAMPLE
1381 is prime and appears in the sequence because 1381+2 = 1383 = 3*461, 1381+4 = 1385 = 5*277, 1381+6 = 1387 = 19*73, 1381+8 = 1389 = 3*463, 1381+10 = 1391 = 13*107 and 1381+12 = 1393 = 7*199, which are all semiprime.
MAPLE
with(numtheory): KD:= proc() local a, b, d, e, f, g, k; k:=ithprime(n); a:=bigomega(k+2); b:=bigomega(k+4); d:=bigomega(k+6); e:=bigomega(k+8); f:=bigomega(k+10); g:=bigomega(k+12); if a=2 and b=2 and d=2 and e=2 and f=2 and g=2then RETURN (k); fi; end: seq(KD(), n=1..200000);
MATHEMATICA
KD = {}; Do[t = Prime[n]; If[PrimeOmega[t + 2] == 2 && PrimeOmega[t + 4] == 2 && PrimeOmega[t + 6] == 2 && PrimeOmega[t + 8] == 2 && PrimeOmega[t + 10] == 2 && PrimeOmega[t + 12] == 2, AppendTo[KD, t]], {n, 200000}]; KD
Select[Prime[Range[155000]], Union[PrimeOmega/@(#+2Range[6])]=={2}&] (* Harvey P. Dale, Dec 13 2018 *)
PROG
(PARI) is(n)=if(n%3==1, isprime((n+2)/3) && isprime((n+8)/3) && bigomega(n+4)==2 && bigomega(n+10)==2, isprime((n+4)\3) && isprime((n+10)\3) && bigomega(n+2)==2 && bigomega(n+8)==2) && isprime(n) && bigomega(n+6)==2 && bigomega(n+12)==2
forprime(p=2, 1e7, if(is(p), print1(p", "))) \\ Charles R Greathouse IV, Aug 25 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 23 2014
STATUS
approved