OFFSET
1,3
COMMENTS
For the combinatorial definitions see A232500. An orbital w over n sectors has its first zero crossing at k if k is the smallest j such that the partial sum(1<=i<=j, w(i))) = 0, where w(i) are the jumps of the orbital represented by -1, 0, 1.
FORMULA
If n is even and k is odd then T(n, k) = 0 else if k = 1 then T(n, 1) = A056040(n-1) else T(n, k) = 2*A057977(k-2)*A056040(n-k).
T(n, n) = A241543(n).
T(n+1, 1) = A126869(n).
T(2*n, 2*n) = |A002420(n)|.
T(2*n+1, 1) = A000984(n).
T(2*n+1, n+1) = A241530(n).
T(2*n+2, 2) = A028329(n).
T(4*n, 2*n) = |A010370(n)|.
T(4*n, 4*n) = |A024491(n)|.
T(4*n+1, 1) = A001448(n).
T(4*n+1, 2*n+1) = A002894(n).
EXAMPLE
[1], [ 1]
[2], [ 0, 2]
[3], [ 2, 2, 2]
[4], [ 0, 4, 0, 2]
[5], [ 6, 12, 4, 2, 6]
[6], [ 0, 12, 0, 4, 0, 4]
[7], [20, 60, 12, 12, 12, 4, 20]
MAPLE
MATHEMATICA
T[n_, k_] := Which[n == 0, 1, k == 0, 0, Mod[n, 2] == 0 && Mod[k, 2] == 1, 0, k == 1, (n-1)!/Quotient[n-1, 2]!^2, True, 2*(n-k)!*(k-2)!/Quotient[k, 2]/(Quotient[k-2, 2]!*Quotient[n-k, 2]!)^2];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 20 2018, from Maple *)
PROG
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 23 2014
STATUS
approved