login
a(n) = pg(3, n) * pg(4, n) * ... * pg(n, n) where pg(m, n) is the n-th m-th-order polygonal number.
4

%I #12 Apr 30 2014 08:07:22

%S 1,1,1,6,160,13125,2544696,978839680,662561095680,724201891583625,

%T 1198933986250000000,2861518844725337212416,9468599329204035806822400,

%U 42083045149004715366557171125,244738882349978781346230604032000,1821980763196818488550000000000000000

%N a(n) = pg(3, n) * pg(4, n) * ... * pg(n, n) where pg(m, n) is the n-th m-th-order polygonal number.

%H Alois P. Heinz, <a href="/A241453/b241453.txt">Table of n, a(n) for n = 0..100</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Polygonal_number">Polygonal number</a>

%e a(5) = pg(3, 5) * pg(4, 5) * pg(5, 5) = 15 * 25 * 35 = 13125.

%p p:= (s, n)-> (n^2*(s-2)-n*(s-4))/2:

%p a:= n-> mul(p(i, n), i=3..n):

%p seq(a(n), n=0..15); # _Alois P. Heinz_, Apr 23 2014

%o (PARI) pg(m, n) = (n^2*(m-2)-n*(m-4))/2;

%o v=[]; for(n=0, 20, v=concat(v, prod(m=3, n, pg(m, n)))); v

%Y Cf. A241452.

%K nonn

%O 0,4

%A _Colin Barker_, Apr 22 2014