login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241445 Number of partitions of n such that the number of parts having multiplicity 1 is not a part and the number of distinct parts is not a part. 5
1, 0, 1, 1, 3, 2, 4, 4, 7, 7, 11, 15, 21, 24, 36, 45, 59, 73, 99, 114, 155, 183, 241, 287, 371, 433, 567, 668, 842, 1003, 1270, 1483, 1856, 2205, 2707, 3210, 3940, 4627, 5661, 6656, 8050, 9489, 11432, 13385, 16070, 18855, 22459, 26310, 31253, 36487, 43249 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Table of n, a(n) for n=0..50.

FORMULA

a(n) + A241446(n) = A000041(n) for n >= 0.

EXAMPLE

a(6) counts these 4 partitions:  6, 51, 33, 222.

MATHEMATICA

z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == 1 &]]]; d[p_] := Length[DeleteDuplicates[p]];

Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, d[p]]], {n, 0, z}]  (* A241442 *)

Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, d[p]] ], {n, 0,  z}] (* A241443 *)

Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, d[p]] ], {n, 0, z}] (* A241444 *)

Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, d[p]] ], {n, 0, z}] (* A241445 *)

Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, d[p]] ], {n, 0, z}] (* A241446 *)

CROSSREFS

Cf. A241442, A241443, A241444, A241446, A000041.

Sequence in context: A240829 A284013 A241412 * A147604 A095401 A309511

Adjacent sequences:  A241442 A241443 A241444 * A241446 A241447 A241448

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 15 18:16 EST 2021. Contains 340188 sequences. (Running on oeis4.)