This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241416 Number of partitions p of n such that the number of numbers having multiplicity 1 in p is a part and the number of numbers having multiplicity > 1 is not a part. 7
 0, 1, 0, 1, 0, 1, 2, 1, 2, 3, 4, 4, 8, 14, 16, 28, 33, 47, 61, 83, 98, 131, 157, 201, 248, 312, 379, 480, 589, 730, 903, 1136, 1373, 1725, 2095, 2593, 3129, 3870, 4625, 5677, 6774, 8215, 9759, 11813, 13896, 16738, 19675, 23515, 27580, 32846, 38349, 45528 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 LINKS FORMULA a(n) + A241414(n) + A241415(n) = A239737(n) for n >= 0. EXAMPLE a(6) counts these 2 partitions:  42, 321. MATHEMATICA z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] ==  &]]]; e[q_] := Length[DeleteDuplicates[Select[q, Count[q, #] > 1 &]]] Table[Count[f[n], p_ /; MemberQ[p, u[p]]], {n, 0, z}]  (* A241413 *) Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, e[p]]], {n, 0, z}]  (* A241414 *) Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, e[p]] ], {n, 0, z}] (* A241415 *) Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241416 *) Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241417 *) Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, e[p]] ], {n, 0, z}] (* A239737 *) CROSSREFS Cf. A241413, A241414, A241415, A241417, A239737. Sequence in context: A281544 A056882 A035534 * A082854 A086742 A133182 Adjacent sequences:  A241413 A241414 A241415 * A241417 A241418 A241419 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 22:44 EDT 2019. Contains 328291 sequences. (Running on oeis4.)