|
|
A241412
|
|
Number of partitions of n such that neither the number of parts having multiplicity >1 nor the number of distinct parts is a part.
|
|
6
|
|
|
1, 0, 1, 1, 3, 2, 4, 4, 7, 7, 11, 14, 19, 21, 30, 38, 51, 59, 81, 98, 124, 156, 199, 239, 311, 365, 468, 572, 711, 844, 1070, 1271, 1572, 1884, 2318, 2749, 3387, 4000, 4879, 5796, 6977, 8266, 9986, 11769, 14071, 16632, 19800, 23300, 27700, 32471, 38447
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
As used here, the term "distinct parts" includes each number, once, that occurs more than once; e.g., the distinct parts of the partition {4,3,3,1,1,1} are 4, 3, 1.
|
|
LINKS
|
Table of n, a(n) for n=0..50.
|
|
EXAMPLE
|
a(6) counts these 4 partitions: 6, 51, 33, 222.
|
|
MATHEMATICA
|
z = 30; f[n_] := f[n] = IntegerPartitions[n]; e[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] > 1 &]]]; d[p_] := Length[DeleteDuplicates[p]];
Table[Count[f[n], p_ /; MemberQ[p, e[p]]], {n, 0, z}] (* A241408 *)
Table[Count[f[n], p_ /; MemberQ[p, e[p]] && MemberQ[p, d[p]]], {n, 0, z}] (* A241409 *)
Table[Count[f[n], p_ /; ! MemberQ[p, e[p]] && MemberQ[p, d[p]] ], {n, 0, z}] (* A241410 *)
Table[Count[f[n], p_ /; MemberQ[p, e[p]] && ! MemberQ[p, d[p]] ], {n, 0, z}] (* A241411 *)
Table[Count[f[n], p_ /; ! MemberQ[p, e[p]] && ! MemberQ[p, d[p]] ], {n, 0, z}] (* A241412 *)
|
|
CROSSREFS
|
Cf. A241408, A241409, A241410, A241411.
Sequence in context: A175512 A240829 A284013 * A241445 A147604 A095401
Adjacent sequences: A241409 A241410 A241411 * A241413 A241414 A241415
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Clark Kimberling, Apr 22 2014
|
|
STATUS
|
approved
|
|
|
|