login
A241378
Number of partitions of n such that the number of parts is not a part and the number of distinct parts is a part.
5
0, 0, 1, 1, 2, 3, 3, 5, 7, 10, 14, 18, 27, 32, 49, 58, 80, 100, 134, 167, 219, 271, 351, 433, 543, 689, 848, 1051, 1298, 1609, 1945, 2413, 2930, 3566, 4321, 5266, 6302, 7647, 9156, 11022, 13174, 15770, 18752, 22408, 26606, 31498, 37375, 44205, 52143, 61507
OFFSET
0,5
FORMULA
a(n) + A241377(n) + A241379(n) = A241381(n) for n >= 0.
EXAMPLE
a(9) counts these 10 partitions: 522, 3321, 3222, 32211, 321111, 22221, 222111, 221111, 211111, 111111111.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; d[p_] := [p] = Length[DeleteDuplicates[p]];
Table[Count[f[n], p_ /; MemberQ[p, Length[p]] && MemberQ[p, d[p]]], {n, 0, z}] (* A241377 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Length[p]] && MemberQ[p, d[p]]], {n, 0, z}] (* A241378 *)
Table[Count[f[n], p_ /; MemberQ[p, Length[p]] && ! MemberQ[p, d[p]]], {n, 0, z}] (* A241379 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Length[p]] && ! MemberQ[p, d[p]]], {n, 0, z}] (* A241380 *)
Table[Count[f[n], p_ /; MemberQ[p, Length[p]] || MemberQ[p, d[p]]], {n, 0, z}] (* A241381 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 21 2014
STATUS
approved