The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241334 Number of partitions p of n including floor(mean(p)) as a part. 6

%I

%S 0,1,2,3,4,6,8,11,15,21,27,38,48,65,86,111,140,189,233,306,383,481,

%T 608,782,936,1186,1481,1828,2223,2793,3331,4144,5012,6079,7437,9051,

%U 10586,12970,15738,18851,22161,26885,31644,38188,45142,52983,63328,75823,87404

%N Number of partitions p of n including floor(mean(p)) as a part.

%F a(n) + A241335(n) = A000041(n) for n >= 0.

%e a(6) counts these 8 partitions: 6, 33, 321, 3111, 222, 2211, 21111, 111111.

%t z = 30; f[n_] := f[n] = IntegerPartitions[n];

%t Table[Count[f[n], p_ /; MemberQ[p, Floor[Mean[p]]]], {n, 0, z}] (* A241334 *)

%t Table[Count[f[n], p_ /; ! MemberQ[p, Floor[Mean[p]]]], {n, 0, z}] (* A241335 *)

%t Table[Count[f[n], p_ /; MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241336 *)

%t Table[Count[f[n], p_ /; ! MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241337 *)

%t Table[Count[f[n], p_ /; MemberQ[p, Round[Mean[p]]]], {n, 0, z}] (* A241338 *)

%t Table[Count[f[n], p_ /; ! MemberQ[p, Round[Mean[p]]]], {n, 0, z}] (* A241339 *)

%Y Cf. A241335, A241336, A241338, A000041, A241312.

%K nonn,easy

%O 0,3

%A _Clark Kimberling_, Apr 20 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 07:01 EDT 2020. Contains 337317 sequences. (Running on oeis4.)