The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241273 Number of partitions p of n into distinct parts such that max(p) = 6*min(p). 4
 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 1, 2, 2, 2, 2, 1, 4, 2, 3, 3, 5, 5, 6, 8, 8, 9, 10, 13, 14, 16, 18, 20, 20, 24, 25, 28, 31, 36, 37, 40, 42, 46, 51, 55, 62, 65, 72, 76, 83, 89, 98, 107, 117, 126, 139, 149, 163, 177, 195, 208, 226, 247, 267, 291 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 LINKS EXAMPLE a(14) counts these 3 partitions:  {12,2}, {6,5,2,1}, {6,4,3,1}. MATHEMATICA z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; Max[p] == 2*Min[p]], {n, 0, z}] (* A241035 *) Table[Count[f[n], p_ /; Max[p] == 3*Min[p]], {n, 0, z}] (* A241063 *) Table[Count[f[n], p_ /; Max[p] == 4*Min[p]], {n, 0, z}] (* A241069 *) Table[Count[f[n], p_ /; Max[p] == 5*Min[p]], {n, 0, z}] (* A241272 *) Table[Count[f[n], p_ /; Max[p] == 6*Min[p]], {n, 0, z}] (* A241273 *) CROSSREFS Cf. A241035, A241063, A241269, A241272. Sequence in context: A069929 A304081 A101312 * A154263 A293435 A294901 Adjacent sequences:  A241270 A241271 A241272 * A241274 A241275 A241276 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 18 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 01:41 EST 2020. Contains 331328 sequences. (Running on oeis4.)