login
Number of triangles on a centered hexagonal grid of size n.
7

%I #17 Sep 19 2017 03:42:51

%S 0,32,900,7380,34676,118044,325872,775856,1653888,3237984,5923028,

%T 10249596,16938588,26924036,41393424,61830480,90059672,128293728,

%U 179185500,245889068,332107188,442162836,581060024,754545360,969196896,1232477192,1552824900

%N Number of triangles on a centered hexagonal grid of size n.

%C A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice.

%H Andrew Howroyd, <a href="/A241223/b241223.txt">Table of n, a(n) for n = 1..200</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HexNumber.html">Hex Number</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Triangle.html">Triangle</a>.

%F a(n) = A240826(n) - A241222(n).

%F a(n) = A241224(n) + A241225(n) + A241226(n) = A241227(n) + A241228(n).

%e For n = 2 the 32 triangles are the following:

%e /. * * * * . . . . . . . . * * *

%e . * * . * . * * . * * . . * . . * * * . * . . .

%e \. . . . . . * . * * . * . . * .

%e -

%e /* . . . . * * . . * * * * . . *

%e * . . * . * . . . . . * . . * . . . * . * * . .

%e \. * * . * * . * * . . * . . * .

%e -

%e /* . . . * * * * * . . . . . . *

%e . . . * . * . . * * . . * . . * . . . . * . . *

%e \* * . * . . . . * . * * * * . *

%e -

%e /* . . * * . . . . . . * * . . *

%e . * * * * . . * . * * . . * * . * . . . * * . .

%e \. . . . * . . * * . . * * . . *

%Y Cf. A045996.

%K nonn

%O 1,2

%A _Martin Renner_, Apr 17 2014

%E a(7) from _Martin Renner_, May 31 2014

%E a(8)-a(22) from _Giovanni Resta_, May 31 2014

%E Terms a(23) and beyond from _Andrew Howroyd_, Sep 18 2017