This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241219 Number of ways to choose two points on a centered hexagonal grid of size n. 3
 0, 21, 171, 666, 1830, 4095, 8001, 14196, 23436, 36585, 54615, 78606, 109746, 149331, 198765, 259560, 333336, 421821, 526851, 650370, 794430, 961191, 1152921, 1371996, 1620900, 1902225, 2218671, 2573046, 2968266, 3407355, 3893445, 4429776, 5019696, 5666661 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice. a(n) is also the number of segments on a centered hexagonal grid of size n. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Hex Number. Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(n) = binomial(A003215(n-1), 2).      = binomial(3*n^2-3*n+1, 2).      = 3/2*n*(n-1)*(3*n^2-3*n+1).      = 9/2*n^4-9*n^3+6*n^2-3/2*n. G.f.: -3*x^2*(7*x^2+22*x+7) / (x-1)^5. - Colin Barker, Apr 18 2014 MAPLE seq(binomial(3*n^2-3*n+1, 2), n=1..34); # Martin Renner, Apr 27 2014 op(PolynomialTools[CoefficientList](convert(series(-3*x^2*(7*x^2+22*x+7)/(x-1)^5, x=0, 35), polynom), x)[2..35]); # Martin Renner, Apr 27 2014 MATHEMATICA CoefficientList[Series[-3 x^2 (7 x^2 + 22 x + 7)/(x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 19 2014 *) PROG (PARI) concat(0, Vec(-3*x^2*(7*x^2+22*x+7) / (x-1)^5 + O(x^100))) \\ Colin Barker, Apr 18 2014 (MAGMA) [Binomial(3*n^2-3*n+1, 2): n in [1..35]]; // Vincenzo Librandi, Apr 19 2014 CROSSREFS Cf. A083374. Sequence in context: A041848 A125358 A126516 * A185128 A007261 A119105 Adjacent sequences:  A241216 A241217 A241218 * A241220 A241221 A241222 KEYWORD nonn,easy AUTHOR Martin Renner, Apr 17 2014 EXTENSIONS Typo in Mathematica program fixed by Martin Renner, Apr 27 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 11:56 EST 2018. Contains 318060 sequences. (Running on oeis4.)