%I #26 Feb 19 2020 10:38:38
%S 0,2,4,6,8,11,13,15,17,19,23,25,27,29,31,33,35,37,39,41,45,47,49,51,
%T 53,55,57,59,61,63,67,69,71,73,75,77,79,81,83,85,89,91,93,95,97,99,
%U 111,113,115,117,119,121,143,165,187,221,223,225,227,229,231,243,265,287,321,333,335,337,339,341,343,365,387,421
%N Numbers n such that there is exactly one number m with m + (some digit of m) = n.
%D Eric Angelini, Posting to Sequence Fans Mailing List, Apr 20 2014
%H Alois P. Heinz, <a href="/A241176/b241176.txt">Table of n, a(n) for n = 1..363</a>
%e Since 10 = 5+5 = 10+0, there are two possibilities of writing 10 in the given way, therefore 10 is not in this list.
%e For numbers in A241175 = {1, 3, 5, 7, 9, 21, 43, 65, 87}, there is NO way of writing them in the given form, therefore they are not in this list.
%p See A241177.
%t A241176[n_] := Module[{m, c = 0},
%t Do[c = c + Count[m + Union[IntegerDigits[m]], n], {m, 0, n}]; c];
%t Select[Range[0, 421], A241176[#] == 1 &] (* _Robert Price_, Mar 20 2019 *)
%o (PARI) is(n)={sum(i=0, min(n, 9), setsearch(Set(digits(n-i)), i)>0)==1||n==0} \\ _M. F. Hasler_, Apr 26 2014
%Y Related sequences: A241173, A241174, A241175, A241176, A241177, A241178, A241179, A241180, A241181, A241182, A241183.
%K nonn,base
%O 1,2
%A _N. J. A. Sloane_, Apr 23 2014
%E Example corrected by _M. F. Hasler_, Apr 26 2014