OFFSET
0,2
COMMENTS
Beginning with a(6), the palindromic sinks appear to be, for positive n, (10^n+1)*(10^(n+1)+1):
n=1 a(6)-a(20) 1072 to 988
n=2 a(21)-a(157) 100953 to 99980
n=3 a(158)-a(1461) 10^7+9827 to 10^7-20
n=4 a(1462)-a(14078) 10^9+98720 to 10^9-20
n=5 a(14079)-a(137233) 10^11+988091 to 10^11-20
n=6 a(137234)-a(1346435) 10^13+9885167 to 10^13-20
n=7 a(1346436)-a(13265907) 10^15+98879696 to 10^15-20
etc. - Hans Havermann, Apr 23 2014
REFERENCES
Eric Angelini, Posting to Sequence Fans Mailing List, Apr 20 2014
LINKS
Hans Havermann, Table of n, a(n) for n = 0..1500
MATHEMATICA
A241173[n_] := Module[{c, nx},
If[n == IntegerReverse[n], Return[0]];
c = 1; nx = n;
While[ ! AnyTrue[nx = Union[Flatten[nx + IntegerDigits[nx]]], # == IntegerReverse[#] &], c++];
Return[c]];
A241174[n_] := Module[{i = 0},
While[A241173[i] != n, i++];
Return[i]];
Table[A241174[i], {i, 0, 5}] (* Robert Price, Mar 17 2019 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Apr 23 2014
EXTENSIONS
More terms from Hans Havermann, Apr 23 2014
STATUS
approved