This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241173 Start with n; add to it any of its digits; repeat; a(n) = minimal number of steps needed to reach a palindrome. 11
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 3, 2, 1, 4, 3, 2, 1, 1, 0, 3, 3, 2, 3, 3, 2, 4, 1, 3, 3, 0, 2, 2, 2, 1, 3, 2, 1, 2, 1, 3, 0, 2, 2, 3, 4, 2, 1, 4, 3, 2, 2, 0, 4, 3, 1, 3, 1, 4, 3, 1, 2, 2, 0, 3, 4, 3, 1, 3, 2, 2, 4, 2, 3, 0, 3, 1, 1, 3, 2, 3, 1, 2, 2, 3, 0, 5, 1, 2, 1, 4, 5, 2, 3, 4, 5, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 COMMENTS a(n) = 0 iff n is already a palindrome (A002113). Is it a theorem that a(n) always exists? a(n) always exists. Proof: A palindrome can be reached by simply adding the initial digit until a palindrome with the same number of digits as the initial number is reached: If no palindrome is reached by then, this will yield a number with initial digit '1'. Thereafter, this procedure will yield the next larger palindrome - either not larger than 19...91 or, after 19...9 + 1 = 20...0, at 20...02. - M. F. Hasler, Apr 26 2014 REFERENCES Eric Angelini, Posting to Sequence Fans Mailing List, Apr 20 2014 LINKS David A. Corneth, Table of n, a(n) for n = 0..9999 David A. Corneth, PARI program David A. Corneth, Steps taken from n as described in name to reach a palindrome EXAMPLE Examples for a(10) through a(23): a(10) = 1 via 10 -> 11 a(11) = 0 via 11 a(12) = 3 via 12 -> 13 -> 16 -> 22 a(13) = 2 via 13 -> 16 -> 22 a(14) = 3 via 14 -> 15 -> 16 -> 22 a(15) = 2 via 15 -> 16 -> 22 a(16) = 1 via 16 -> 22 a(17) = 4 via 17 -> 18 -> 19 -> 20 -> 22 a(18) = 3 via 18 -> 19 -> 20 -> 22 a(19) = 2 via 19 -> 20 -> 22 a(20) = 1 via 20 -> 22 a(21) = 1 via 21 -> 22 a(22) = 0 via 22 a(23) = 3 via 23 -> 25 -> 30 -> 33 MATHEMATICA A241173[n_] := Module[{c, nx},    If[n == IntegerReverse[n], Return];    c = 1; nx = n;    While[ ! AnyTrue[nx = Flatten[nx + IntegerDigits[nx]], # == IntegerReverse[#] &], c++];    Return[c]]; Table[A241173[i], {i, 0, 100}] (* Robert Price, Mar 17 2019 *) PROG (PARI) a(n, m=0)={ if( m, my(d); for(i=1, #d=vecsort(digits(n), , 12), d[i] && if( m>1, a(n+d[i], m-1) /*&& !print1("/*", [n, d[i], m], "* /")*/, is_A002113(n+d[i])) && return(m)), is_A002113(n) || until(a(n, m++), ); m)} \\ Memoization should be implemented to improve performance which remains poor esp. for terms just above 10^k+1. - M. F. Hasler, Apr 26 2014 (PARI) See Corneth link \\ faster than above \\ David A. Corneth, Mar 21 2019 CROSSREFS Cf. A002113. A241174 gives the smallest number that takes n steps to reach a palindrome. Related sequences: A241173, A241174, A241175, A241176, A241177, A241178, A241179, A241180, A241181, A241182, A241183. Sequence in context: A318056 A096839 A099891 * A096835 A237838 A262880 Adjacent sequences:  A241170 A241171 A241172 * A241174 A241175 A241176 KEYWORD nonn,base AUTHOR N. J. A. Sloane, Apr 23 2014 EXTENSIONS More terms from M. F. Hasler, Apr 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 06:01 EDT 2019. Contains 328291 sequences. (Running on oeis4.)