The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241100 Smallest prime with length n having at least n-1 identical digits. 9
 2, 11, 101, 1117, 10111, 101111, 1111151, 11110111, 101111111, 1111111121, 11111111113, 101111111111, 1111111118111, 11111111111411, 111111111116111, 1111111111111181, 11111111101111111, 101111111111111111, 1111111111111111111, 11011111111111111111 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: each term consists of at least n-1 digits 1. - Chai Wah Wu, Dec 10 2015 From Robert G. Wilson v, Dec 14 2015: (Start) Terms for which the digit d is the other digit besides the 1's: d: 0: 3, 5, 6, 8, 9, 12, 17, 18, 20, 24, 26, 29, 30, 32, 33, 35, 36, 38, 39, 42, ..., ; n cannot be congruent to 1 (mod 3); 1: 2, 19, 23, not 317, nor 1031, ..., (see A004023); n cannot be congruent to 0 (mod 3) 2: 1, 10, 34, 46, 67, 75, 100, 103, 142, 148, 154, 175, 198, 232, 244, 274, ..., ; 3: 11, 63, 69, 71, 87, 123, 125, 165, 191, 197, 203, 239, 254, 255, 275, 279, ..., ; 4: 14, 31, 55, 76, 85, 91, 95, 109, 121, 127, 130, 143, 155, 163, 166, 178, ..., ; 5: 7, 22, 28, 37, 45, 52, 60, 94, 111, 132, 133, 139, 159, 160, 172, 184, ..., ; 6: 15, 41, 57, 59, 135, 156, 171, 213, 311, 336, 339, 345, 347, 350, 431, ..., ; 7: 4, 40, 47, 58, 64, 70, 101, 106, 112, 115, 118, 131, 136, 145, 157, 169, ..., ; 8: 13, 16, 25, 43, 49, 61, 73, 79, 82, 88, 93, 97, 99, 117, 124, 141, 151, ..., ; 9: 21, 27, 65, 81, 119, 167, 179, 183, 189, 237, 242, 287, 299, 333, 356, ..., . (End) LINKS Chai Wah Wu, Table of n, a(n) for n = 1..1000 MAPLE with(numtheory):lst:={}:nn:=80:kk:=0:T:=array(1..nn):U:=array(1..20):    for n from 2 to nn do:      for i from 1 to n do:      T[i]:=1:      od:      ii:=0:       for k from 0 to 9 while(ii=0)do:         for j from 1 to n while(ii=0)do:         T[j]:=k:s:=sum('T[i]*10^(n-i)', 'i'=1..n):          if type(s, prime)=true and length(s)=n          then          ii:=1: kk:=kk+1:U[kk]:=s:          else          T[j]:=1:          fi:        od:      od:     od :      print(U) : MATHEMATICA f[n_] := Block[{k = n - 2, p = 0, r = (10^n - 1)/9, s}, If[ Mod[n, 3] != 1, While[p = r - 10^k; k > 0 && ! PrimeQ@ p, k--]]; If[ Mod[p, 10] == 0, k = 0; s = Select[Range[0, 8], Mod[# + n, 3] > 0 &]; While[p = Select[r + 10^k*s, PrimeQ]; k < n && p == {}, k++]]; p = Min@ p]; Array[f, 20] (* Robert G. Wilson v, Dec 14 2015 *) PROG (Python) from __future__ import division from sympy import isprime def A241100(n):     for i in range(1, 10):         x = i*(10**n-1)//9         for j in range(n-1, -1, -1):             for k in range(i, -1, -1):                 if j < n-1 or k < i:                     y = x-k*(10**j)                     if isprime(y):                         return y         for j in range(n):             for k in range(1, 9-i+1):                 y = x+k*(10**j)                 if isprime(y):                     return y # Chai Wah Wu, Dec 29 2015 CROSSREFS Sequence in context: A249447 A199302 A069663 * A121419 A099701 A089393 Adjacent sequences:  A241097 A241098 A241099 * A241101 A241102 A241103 KEYWORD nonn,base AUTHOR Michel Lagneau, Apr 16 2014 EXTENSIONS a(4), a(7), a(10), a(11), a(13)-a(16) corrected by Chai Wah Wu, Dec 10 2015 a(1) from Robert G. Wilson v, Dec 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 17:22 EST 2020. Contains 331280 sequences. (Running on oeis4.)