%I #4 Apr 29 2014 22:44:36
%S 1,0,1,1,1,3,3,5,6,10,12,16,21,29,36,47,58,77,93,121,146,185,225,280,
%T 338,419,505,612,743,888,1075,1283,1539,1822,2190,2575,3073,3612,4287,
%U 5022,5936,6938,8158,9527,11151,12983,15156,17617,20468,23770,27531
%N Number of partitions p of n such that (number of numbers in p having multiplicity > 1) = number of 1s in p.
%e a(6) counts these 3 partitions: 6, 42, 2211.
%t z = 30; f[n_] := f[n] = IntegerPartitions[n]; e[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] > 1 &]]]; Table[Count[f[n], p_ /; e[p] == Count[p, 1]], {n, 0, z}]
%Y Cf. A241409, A241131.
%K nonn,easy
%O 0,6
%A _Clark Kimberling_, Apr 24 2014