OFFSET
0,3
COMMENTS
LINKS
Kival Ngaokrajang, Illustration of initial terms
Index entries for linear recurrences with constant coefficients, signature (13,-39,27).
FORMULA
a(n) = (1/2)*3^(2*n) - (3/2)*3^n + 1.
a(n) = 13*a(n-1)-39*a(n-2)+27*a(n-3). G.f.: -x*(15*x+1) / ((x-1)*(3*x-1)*(9*x-1)). - Colin Barker, Apr 15 2014
MAPLE
A241038:=n->(1/2)*3^(2*n) - (3/2)*3^n + 1; seq(A241038(n), n=0..30); # Wesley Ivan Hurt, Apr 15 2014
MATHEMATICA
Table[(1/2)*3^(2 n) - (3/2)*3^n + 1, {n, 0, 30}] (* Wesley Ivan Hurt, Apr 15 2014 *)
LinearRecurrence[{13, -39, 27}, {0, 1, 28}, 30] (* Harvey P. Dale, Oct 12 2017 *)
PROG
(PARI) a(n)= (1/2)*3^(2*n) - (3/2)*3^n + 1
for(n=0, 100, print1(a(n), ", "))
(PARI) Vec(-x*(15*x+1)/((x-1)*(3*x-1)*(9*x-1)) + O(x^100)) \\ Colin Barker, Apr 15 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Apr 15 2014
STATUS
approved