%I #53 Feb 10 2015 09:46:11
%S 1,2,24,2592,3317760,62208000000,20316635136000000,
%T 133852981198454784000000,20211123400293732996612096000000,
%U 78302033109811407811828935756349440000000,8613223642079254859301182933198438400000000000000000
%N A000142 (n+1) * A002109(n), a product of factorials and hyperfactorials.
%C a(n+1) / a(n) = A055897(n+2);
%C row products of the triangle A245334.
%H Reinhard Zumkeller, <a href="/A240993/b240993.txt">Table of n, a(n) for n = 0..36</a>
%F a(n) ~ A * sqrt(2*Pi) * n^(n^2/2+3*n/2+19/12) / exp(n*(n+4)/4), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - _Vaclav Kotesovec_, Nov 14 2014
%t Table[(n+1)!*Hyperfactorial[n], {n, 0, 10}] (* _Vaclav Kotesovec_, Nov 14 2014 *)
%t Table[(n+1)*(n!)^(n+1)/BarnesG[n+1], {n, 0, 10}] (* _Vaclav Kotesovec_, Nov 14 2014 *)
%o (Haskell)
%o a240993 n = a000142 (n + 1) * a002109 n
%Y Cf. A000142, A002109, A245334, A055897, A245334, A111063, A074962.
%K nonn
%O 0,2
%A _Reinhard Zumkeller_, Aug 31 2014