login
Decimal expansion of the infinite product of e*(1-1/n^2)^(n^2) for n >= 2, which evaluates as Pi/e^(3/2).
3

%I #16 Jan 17 2020 05:26:32

%S 7,0,0,9,8,4,0,7,1,9,1,6,6,2,1,1,9,9,8,1,5,4,7,1,4,3,5,7,6,5,7,1,5,4,

%T 9,0,1,7,1,3,0,9,9,7,1,9,0,0,2,6,0,3,7,9,3,2,3,1,2,8,1,2,8,4,6,6,4,6,

%U 8,1,2,5,9,5,9,5,4,4,8,7,2,8,9,9,5,7,1,6,7,3,0,2,0,3,4,8,8,0,9,5

%N Decimal expansion of the infinite product of e*(1-1/n^2)^(n^2) for n >= 2, which evaluates as Pi/e^(3/2).

%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants.</a> p. 2.

%H S. R. Holcombe, <a href="http://arxiv.org/abs/1204.2451">A product representation for Pi</a>, arXiv:1204.2451 [math.NT], 2012.

%F prod_{n>=2} e*(1-1/n^2)^(n^2) = Pi/e^(3/2).

%e 0.700984071916621199815471435765715490171309971900260379323128...

%t RealDigits[Pi/E^(3/2), 10, 100] // First

%K nonn,cons,easy

%O 0,1

%A _Jean-François Alcover_, Aug 06 2014