This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240982 Decimal expansion of the limit of a recursive sequence connected to the Plastic constant (A060006). 0
 1, 8, 1, 6, 8, 8, 3, 4, 2, 4, 2, 4, 4, 7, 4, 0, 3, 1, 2, 4, 4, 8, 1, 8, 8, 2, 0, 2, 2, 2, 4, 8, 0, 7, 4, 5, 2, 9, 6, 5, 9, 2, 1, 7, 5, 7, 7, 5, 8, 7, 3, 4, 2, 3, 1, 5, 8, 1, 2, 5, 2, 9, 1, 6, 7, 0, 3, 9, 4, 7, 1, 7, 7, 1, 6, 0, 4, 1, 5, 3, 6, 7, 7, 5, 8, 0, 5, 7, 8, 6, 8, 7, 9, 6, 3, 9, 2, 3, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2 Cubic Variations of the Golden Mean, p. 9. LINKS Steven R. Finch, Errata and Addenda to Mathematical Constants Steven R. Finch, Errata and Addenda to Mathematical Constants, January 22, 2016. [Cached copy, with permission of the author] Eric Weisstein's World of Mathematics, Plastic Constant Wikipedia, Plastic number FORMULA psi(1)=1, psi(n) = (1+psi(n-1))^(1/3), lim_(n -> infinity) (psi0-psi(n))*(3*(1+1/psi0))^n, where psi0 = A060006 = the Plastic constant. EXAMPLE 1.8168834242447403124481882022248074529659217577587342315812529167... MATHEMATICA digits = 99; n0 = 10; dn = 10; psi0 = A060006 = Root[x^3 - x - 1, x, 1] // N[#, 3*digits]&; Clear[psi, limPsi]; psi[1] = 1; psi[n_] := psi[n] = (1 + psi[n - 1])^(1/3) // N[#, 3*digits]&; limPsi[n_] := limPsi[n] = (psi0 - psi[n])*(3*(1 + 1/psi0))^n; limPsi[n = n0]; limPsi[n = n0 + dn]; While[RealDigits[limPsi[n], 10, digits] != RealDigits[limPsi[n - dn], 10, digits], Print["n = ", n ]; n = n + dn]; RealDigits[limPsi[n], 10, digits] // First CROSSREFS Cf. A060006. Sequence in context: A299627 A157697 A281785 * A258146 A182551 A005486 Adjacent sequences:  A240979 A240980 A240981 * A240983 A240984 A240985 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Aug 06 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 11:51 EDT 2019. Contains 326057 sequences. (Running on oeis4.)