login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of the moment of order 1 at Pi/3 of Ls_4, where Ls_4 is a generalized log-sine integral.
0

%I #14 May 13 2024 21:04:46

%S 2,5,5,5,4,8,5,4,1,2,9,2,9,0,7,6,2,8,5,5,2,3,8,9,7,6,1,6,8,3,3,3,1,3,

%T 1,0,3,7,7,3,7,1,7,5,2,5,3,6,3,6,6,0,7,5,4,2,5,1,4,7,1,6,1,9,7,9,8,6,

%U 1,8,1,2,1,5,5,2,5,6,5,3,3,2,1,4,8,2,5,8,8,6,2,6,4,0,1,2,4,8,0,4,5,7,7,8,9

%N Decimal expansion of the moment of order 1 at Pi/3 of Ls_4, where Ls_4 is a generalized log-sine integral.

%H Jonathan M. Borwein, Armin Straub, <a href="http://arxiv.org/abs/1103.3893">Log-sine evaluations of Mahler measures</a>, arXiv:1103.3893 [math.CA], (20-March-2011)

%H E. D. Krupnikov, K. S. Kölbig, <a href="https://doi.org/10.1016/S0377-0427(96)00111-2">Some special cases of the generalized hypergeometric function (q+1)Fq</a>, J. Comp. Appl. Math. 78 (1997) 79-95, eq. 18.

%F -integral_(0..Pi/3) t*log(2*sin(t/2))^2 dt.

%F -(1/2)*sum_(k=1..infinity) 1/(Binomial(2*k, k)*k^4).

%F -17*Pi^4/6480.

%e -0.255548541292907628552389761683331310377371752536366...

%t RealDigits[-17*Pi^4/6480, 10, 105] // First

%K nonn,cons,easy

%O 0,1

%A _Jean-François Alcover_, Aug 04 2014