login
A240933
a(n) = n^10 - n^9.
4
0, 0, 512, 39366, 786432, 7812500, 50388480, 242121642, 939524096, 3099363912, 9000000000, 23579476910, 56757583872, 127253992476, 268593608192, 538207031250, 1030792151040, 1897406023952, 3372107936256, 5808378560022, 9728000000000, 15885600931620, 25352653573632
OFFSET
0,3
COMMENTS
For n>1 number of 10-digit positive integers in base n.
LINKS
FORMULA
a(n) = n^9*(n-1) = n^10 - n^9.
a(n) = A008454(n) - A001017(n). - Michel Marcus, Aug 03 2014
G.f.: 2*(256*x^2 + 16867*x^3 + 190783*x^4 + 621199*x^5 + 689155*x^6 + 264409*x^7 + 30973*x^8 + 757*x^9 + x^10)/(1 - x)^11. - Wesley Ivan Hurt, Aug 03 2014
Recurrence: a(n) = 11*a(n-1)-55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+330*a(n-7)-165*a(n-8)+55*a(n-9)-11*a(n-10)+a(n-11). - Wesley Ivan Hurt, Aug 03 2014
Sum_{n>=2} 1/a(n) = 9 - Sum_{k=2..9} zeta(k). - Amiram Eldar, Jul 05 2020
MAPLE
A240933:=n->n^10-n^9: seq(A240933(n), n=0..30); # Wesley Ivan Hurt, Aug 03 2014
MATHEMATICA
Table[n^10 - n^9, {n, 0, 30}] (* Wesley Ivan Hurt, Aug 03 2014 *)
CoefficientList[Series[2 (256*x^2 + 16867*x^3 + 190783*x^4 + 621199*x^5 + 689155*x^6 + 264409*x^7 + 30973*x^8 + 757*x^9 + x^10)/(1 - x)^11, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 03 2014 *)
LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {0, 0, 512, 39366, 786432, 7812500, 50388480, 242121642, 939524096, 3099363912, 9000000000}, 40] (* Harvey P. Dale, Oct 19 2022 *)
PROG
(PARI) vector(100, n, (n-1)^10 - (n-1)^9) \\ Derek Orr, Aug 03 2014
(Magma) [n^10-n^9 : n in [0..30]]; // Wesley Ivan Hurt, Aug 03 2014
KEYWORD
nonn,easy
AUTHOR
Martin Renner, Aug 03 2014
STATUS
approved