

A240905


Smallest k such that the minimal factor in factorization of k! over distinct terms of A050376 is A050376(n), or a(n)=0 if there is no such k.


7



2, 12, 20, 6, 10, 130, 180, 240, 480, 597, 901, 40537, 15841, 23401, 36720, 112321, 20377, 177842
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n) is the smallest k such that the minimal infinitary divisor of k! is A050376(n).
Conjecture. All a(n)>0.


LINKS

Table of n, a(n) for n=1..18.


EXAMPLE

Let n=4. A050376(4)=5. For k=2,3,4,5,6, we have the following factorizations over distinct terms of A050376: 2!=2,3!=2*3,4!=2*3*4,5!=2*3*4*5,6!=5*9*16. Only the last factorization begins with 5. So a(4)=6.


CROSSREFS

Cf. A240537, A240606, A240619, A240620, A240668, A240669, A240670, A240672, A240695, A240751, A240755, A240764.
Sequence in context: A216629 A259409 A073257 * A303880 A174977 A011532
Adjacent sequences: A240902 A240903 A240904 * A240906 A240907 A240908


KEYWORD

nonn,more


AUTHOR

Vladimir Shevelev, Apr 14 2014


EXTENSIONS

More terms from Peter J. C. Moses, Apr 19 2014


STATUS

approved



