login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240872     Number of partitions p of n into distinct parts such that max(p) = 4 + min(p). 3
0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Table of n, a(n) for n=0..80.

EXAMPLE

a(12) counts these 3 partitions:  84, 642, 5421.

MATHEMATICA

    z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];

    Table[Count[f[n], p_ /; Max[p] == 2 + Min[p]], {n, 0, z}] (* A171182 *)

    Table[Count[f[n], p_ /; Max[p] == 3 + Min[p]], {n, 0, z}] (* A240871 *)

    Table[Count[f[n], p_ /; Max[p] == 4 + Min[p]], {n, 0, z}] (* A240872 *)

    Table[Count[f[n], p_ /; Max[p] == 5 + Min[p]], {n, 0, z}] (* A240873 *)

CROSSREFS

Cf. A171182, A240871, A240873.

Sequence in context: A096004 A193495 A071068 * A328806 A326370 A137735

Adjacent sequences:  A240869 A240870 A240871 * A240873 A240874 A240875

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 15 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 22:36 EDT 2020. Contains 337388 sequences. (Running on oeis4.)