login
A240864
Number of partitions of n into distinct parts of which the number of even parts and the number of odd parts are parts.
7
0, 0, 0, 1, 0, 1, 1, 2, 1, 2, 2, 3, 3, 4, 5, 6, 8, 8, 11, 10, 17, 15, 23, 19, 32, 26, 42, 35, 57, 49, 73, 66, 95, 90, 119, 121, 153, 161, 191, 214, 239, 280, 298, 365, 373, 470, 462, 603, 576, 763, 714, 963, 889, 1205, 1102, 1502, 1371, 1857, 1696, 2289
OFFSET
0,8
EXAMPLE
a(15) counts these 6 partitions: {14,1}, {12,2,1}, {9,3,2,1}, {7,4,3,1}, {6,5,3,1}, {5,4,3,2,1}.
MATHEMATICA
z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
t1 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]]], {n, 0, z}] (* A240862 *)
t2 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240863, *)
t3 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240864 *)
t4 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] || MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240865 *)
t5 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240866 *)
t6 = Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240867 *)
t7 = Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240868 *)
CROSSREFS
Cf. A240862, A240863, A240865, A240866, A240867, A240868; for analogous sequences for unrestricted partitions, see A240573-A240579.
Sequence in context: A161228 A214130 A029172 * A241322 A275380 A161052
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 14 2014
STATUS
approved