login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240862     Number of partitions of n into distinct parts of which the number of even parts is a part. 7
0, 0, 0, 1, 0, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 12, 14, 16, 19, 23, 27, 33, 37, 45, 51, 60, 68, 82, 94, 108, 123, 143, 165, 188, 214, 246, 282, 318, 362, 412, 469, 527, 597, 675, 764, 858, 965, 1086, 1223, 1367, 1530, 1717, 1923, 2144, 2393, 2674, 2981, 3315 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Table of n, a(n) for n=0..57.

FORMULA

a(n) + A240869(n) = A000009(n) for n >= 0.

EXAMPLE

a(10) counts these 5 partitions:  82, 721, 631, 541, 4321.

MATHEMATICA

z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];

    t1 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]]], {n, 0, z}] (* A240862 *)

    t2 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240863, *)

    t3 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240864 *)

    t4 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] || MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240865 *)

    t5 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240866 *)

    t6 = Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240867 *)

    t7 = Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240868 *)

CROSSREFS

Cf. A240863, A240864, A240865, A240866, A240867, A204868; for analogous sequences for unrestricted partitions, see A240573-A240579.

Sequence in context: A040039 A008667 A239880 * A177716 A109763 A226748

Adjacent sequences:  A240859 A240860 A240861 * A240863 A240864 A240865

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 14 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 22:57 EDT 2018. Contains 315425 sequences. (Running on oeis4.)