|
|
A240831
|
|
Sequence U(n) arising from analysis of structure of A240830.
|
|
3
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 7, 1, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 7, 7, 1, 7, 1, 7, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 13, 7, 7, 7, 7, 7, 13, 7, 13, 7, 7, 7, 13, 7, 13, 7, 13, 7, 13, 7, 13, 7, 13, 7, 19, 7, 13, 7, 13, 7, 19, 7, 19, 7, 13, 7, 19
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,14
|
|
REFERENCES
|
Callaghan, Joseph, John J. Chew III, and Stephen M. Tanny. "On the behavior of a family of meta-Fibonacci sequences." SIAM Journal on Discrete Mathematics 18.4 (2005): 794-824. See Eq. (2.2) and Table 2.2.
|
|
LINKS
|
Table of n, a(n) for n=2..100.
Index entries for Hofstadter-type sequences
|
|
MAPLE
|
#T_s, k(n) from Callaghan et al. Eq. (2.2).
s:=0; k:=7;
T:=proc(n) option remember; global R, U, s, k; # A240830
if n <= s+k then 1
else
add(U(n-i), i=0..k-1);
fi; end;
U:=proc(n) option remember; global R, T, s, k; # A240831
T(R(n)); end;
R:=proc(n) option remember; global U, T, s, k; # A240832
n-s-T(n-1); end;
t1:=[seq(U(n), n=2..100)];
|
|
CROSSREFS
|
Cf. A240830, A240832.
Sequence in context: A129408 A339748 A325470 * A170824 A248909 A140213
Adjacent sequences: A240828 A240829 A240830 * A240832 A240833 A240834
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Apr 16 2014
|
|
STATUS
|
approved
|
|
|
|