login
A240831
Sequence U(n) arising from analysis of structure of A240830.
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 7, 1, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 7, 7, 1, 7, 1, 7, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 13, 7, 7, 7, 7, 7, 13, 7, 13, 7, 7, 7, 13, 7, 13, 7, 13, 7, 13, 7, 13, 7, 13, 7, 19, 7, 13, 7, 13, 7, 19, 7, 19, 7, 13, 7, 19
OFFSET
2,14
LINKS
Joseph Callaghan, John J. Chew III, and Stephen M. Tanny, On the behavior of a family of meta-Fibonacci sequences, SIAM Journal on Discrete Mathematics 18.4 (2005): 794-824. See Eq. (2.2) and Table 2.2.
MAPLE
#T_s, k(n) from Callaghan et al. Eq. (2.2).
s:=0; k:=7;
T:=proc(n) option remember; global R, U, s, k; # A240830
if n <= s+k then 1
else
add(U(n-i), i=0..k-1);
fi; end;
U:=proc(n) option remember; global R, T, s, k; # A240831
T(R(n)); end;
R:=proc(n) option remember; global U, T, s, k; # A240832
n-s-T(n-1); end;
t1:=[seq(U(n), n=2..100)];
MATHEMATICA
A240830[n_]:=A240830[n]=If[n<=7, 1, Sum[A240831[n-i], {i, 0, 6}]];
A240831[n_]:=A240831[n]=A240830[n-A240830[n-1]];
Array[A240831, 100, 2] (* Paolo Xausa, Dec 06 2023, after N. J. A. Sloane *)
CROSSREFS
Sequence in context: A129408 A339748 A325470 * A170824 A248909 A140213
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 16 2014
STATUS
approved