Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Sep 08 2022 08:46:07
%S 0,0,2,2,4,2,6,4,8,4,10,6,12,6,14,8,16,8,18,10,20,10,22,12,24,12,26,
%T 14,28,14,30,16,32,16,34,18,36,18,38,20,40,20,42,22,44,22,46,24,48,24,
%U 50,26,52,26,54,28,56,28,58,30,60,30,62,32,64,32,66,34,68,34,70,36,72,36,74,38,76,38,78,40,80,40
%N a(1)=a(2)=0, a(3)=2; thereafter a(n) = Sum( a(n-i-s-a(n-i-1)), i=0..k-1 ), where s=0, k=3.
%C Is this A185048 with the leading two 1's replaced by 0's? - _R. J. Mathar_, Apr 17 2014.
%C This is true, see formulas below. - _Bruno Berselli_, Apr 18 2014
%H N. J. A. Sloane, <a href="/A240828/b240828.txt">Table of n, a(n) for n = 1..20000</a>
%H Joseph Callaghan, John J. Chew III, and Stephen M. Tanny, <a href="http://dx.doi.org/10.1137/S0895480103421397">On the behavior of a family of meta-Fibonacci sequences</a>, SIAM Journal on Discrete Mathematics 18.4 (2005): 794-824. See Fig. 1.4.
%H Craig Knecht, <a href="/A240828/a240828.jpg">Row sums of superimposed binary filled triangle.</a>
%H <a href="/index/Ho#Hofstadter">Index entries for Hofstadter-type sequences</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,1,0,-1).
%F From _Bruno Berselli_, Apr 18 2014: (Start)
%F G.f.: 2*x^3*(1 + x + x^2)/((1 - x)^2*(1 + x)^2*(1 + x^2)).
%F a(n) = n - 1 - ((-1)^n + 1)*(n - (-1)^floor(n/2) - 1)/4. Therefore:
%F a(2h+1) = 2h, a(2h) = 2*floor(h/2), or also: a(4h) = a(4h+2) = 2h, a(4h+1) = 4h, a(4h+3) = 4h+2.
%F a(n) = a(n-2) + a(n-4) - a(n-6) for n>6. (End)
%p #T_s,k(n) from Callaghan et al. Eq. (1.6).
%p s:=0; k:=3;
%p a:=proc(n) option remember; global s,k;
%p if n <= 2 then 0
%p elif n = 3 then 2
%p else
%p add(a(n-i-s-a(n-i-1)),i=0..k-1);
%p fi; end;
%p t1:=[seq(a(n),n=1..100)];
%t LinearRecurrence[{0, 1, 0, 1, 0, -1},{0, 0, 2, 2, 4, 2}, 100] (* _Vincenzo Librandi_, Jul 12 2015 *)
%o (Magma) [n le 3 select 2*Floor((n-1)/2) else Self(n-Self(n-1))+Self(n-1-Self(n-2))+Self(n-2-Self(n-3)): n in [1..100]]; // _Bruno Berselli_, Apr 18 2014
%o (Magma) [n-1-((-1)^n+1)*(n-(-1)^Floor(n/2)-1)/4: n in [1..80]]; // _Vincenzo Librandi_, Jul 12 2015
%Y Cf. A185048.
%K nonn,look,hear,easy
%O 1,3
%A _N. J. A. Sloane_, Apr 16 2014