login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240828 a(1)=a(2)=0, a(3)=2; thereafter a(n) = Sum( a(n-i-s-a(n-i-1)), i=0..k-1 ), where s=0, k=3. 7
0, 0, 2, 2, 4, 2, 6, 4, 8, 4, 10, 6, 12, 6, 14, 8, 16, 8, 18, 10, 20, 10, 22, 12, 24, 12, 26, 14, 28, 14, 30, 16, 32, 16, 34, 18, 36, 18, 38, 20, 40, 20, 42, 22, 44, 22, 46, 24, 48, 24, 50, 26, 52, 26, 54, 28, 56, 28, 58, 30, 60, 30, 62, 32, 64, 32, 66, 34, 68, 34, 70, 36, 72, 36, 74, 38, 76, 38, 78, 40, 80, 40 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Is this A185048 with the leading two 1's replaced by 0's? - R. J. Mathar, Apr 17 2014.

This is true, see formulas below. - Bruno Berselli, Apr 18 2014

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 1..20000

Joseph Callaghan, John J. Chew III, and Stephen M. Tanny, On the behavior of a family of meta-Fibonacci sequences, SIAM Journal on Discrete Mathematics 18.4 (2005): 794-824. See Fig. 1.4.

Craig Knecht, Row sums of superimposed binary filled triangle.

Index entries for Hofstadter-type sequences

Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,-1).

FORMULA

From Bruno Berselli, Apr 18 2014: (Start)

G.f.: 2*x^3*(1 + x + x^2)/((1 - x)^2*(1 + x)^2*(1 + x^2)).

a(n) = n - 1 - ((-1)^n + 1)*(n - (-1)^floor(n/2) - 1)/4. Therefore:

a(2h+1) = 2h, a(2h) = 2*floor(h/2), or also: a(4h) = a(4h+2) = 2h, a(4h+1) = 4h, a(4h+3) = 4h+2.

a(n) = a(n-2) + a(n-4) - a(n-6) for n>6. (End)

MAPLE

#T_s, k(n) from Callaghan et al. Eq. (1.6).

s:=0; k:=3;

a:=proc(n) option remember; global s, k;

if n <= 2 then 0

elif n = 3 then 2

else

    add(a(n-i-s-a(n-i-1)), i=0..k-1);

fi; end;

t1:=[seq(a(n), n=1..100)];

MATHEMATICA

LinearRecurrence[{0, 1, 0, 1, 0, -1}, {0, 0, 2, 2, 4, 2}, 100] (* Vincenzo Librandi, Jul 12 2015 *)

PROG

(MAGMA) [n le 3 select 2*Floor((n-1)/2) else Self(n-Self(n-1))+Self(n-1-Self(n-2))+Self(n-2-Self(n-3)): n in [1..100]]; // Bruno Berselli, Apr 18 2014

(MAGMA) [n-1-((-1)^n+1)*(n-(-1)^Floor(n/2)-1)/4: n in [1..80]]; // Vincenzo Librandi, Jul 12 2015

CROSSREFS

Cf. A185048.

Sequence in context: A277705 A028913 A185048 * A239240 A054929 A236628

Adjacent sequences:  A240825 A240826 A240827 * A240829 A240830 A240831

KEYWORD

nonn,look,hear,easy

AUTHOR

N. J. A. Sloane, Apr 16 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 16:16 EST 2020. Contains 338640 sequences. (Running on oeis4.)