login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240789 Number of n X 2 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4. 1
3, 4, 5, 10, 13, 14, 30, 32, 36, 67, 79, 97, 173, 191, 232, 402, 464, 580, 960, 1104, 1400, 2250, 2637, 3388, 5280, 6255, 8117, 12342, 14819, 19374, 28826, 35008, 46021, 67233, 82554, 108956, 156715, 194316, 257170, 365065, 456688, 605532, 850096, 1071831 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 4*a(n-3) + a(n-5) - 3*a(n-6) - 3*a(n-8) - 4*a(n-9) + a(n-11) + 4*a(n-12) + 3*a(n-14) - 2*a(n-17) for n>19.

Empirical g.f.: x*(3 + 4*x + 5*x^2 - 2*x^3 - 3*x^4 - 9*x^5 - 5*x^6 - 13*x^7 - 6*x^8 - 12*x^9 + 7*x^10 + 12*x^11 + 26*x^12 + 8*x^13 - 8*x^14 - 17*x^15 - 5*x^16 + 5*x^17 + 2*x^18) / ((1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(1 - x^2 - x^3)*(1 - 2*x^3)*(1 + x^2 - x^3 + x^4 - x^5)). - Colin Barker, Oct 29 2018

EXAMPLE

All solutions for n=4:

..3..3....3..3....3..3....3..3....3..2....3..2....3..3....3..2....3..3....3..3

..2..1....2..2....2..1....2..2....3..1....3..1....2..2....3..1....2..2....2..2

..3..3....3..1....3..3....3..1....2..2....2..1....3..3....2..2....3..1....3..1

..2..2....2..2....2..1....3..2....3..1....3..3....2..2....3..3....3..1....2..1

CROSSREFS

Column 2 of A240792.

Sequence in context: A185345 A260823 A135114 * A191647 A195131 A240793

Adjacent sequences:  A240786 A240787 A240788 * A240790 A240791 A240792

KEYWORD

nonn

AUTHOR

R. H. Hardin, Apr 12 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 05:36 EDT 2019. Contains 321422 sequences. (Running on oeis4.)