login
A240743
Number of compositions of n having exactly eight fixed points.
3
1, 1, 3, 7, 16, 35, 76, 162, 342, 706, 1474, 3030, 6207, 12660, 25739, 52174, 105516, 212972, 429169, 863721, 1736237, 3487091, 6998235, 14036039, 28137051, 56380699, 112936022, 226157834, 452782897, 906328973, 1813903281, 3629837847, 7262985540, 14531361628
OFFSET
36,3
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 36..1000
FORMULA
a(n) ~ c * 2^n, where c = 0.00000000002465665216785151607617323669331409016812218707985200021988733051... . - Vaclav Kotesovec, Sep 07 2014
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, series(
add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 9))
end:
a:= n-> coeff(b(n, 1), x, 8):
seq(a(n), n=36..70);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n - j, i + 1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 9}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 8}]; Table[a[n], {n, 36, 70}] (* Jean-François Alcover, Nov 06 2014, after Maple *)
CROSSREFS
Column k=8 of A238349 and of A238350.
Sequence in context: A101509 A240741 A240742 * A240744 A240745 A227682
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Apr 11 2014
STATUS
approved