%I #9 Sep 06 2014 15:05:35
%S 1,21,378,7056,143325,3207897,79170399,2146836978,63641666088,
%T 2051450651250,71530799628288,2684845732979592,107992630908804096,
%U 4636019437800293718,211623646464000000000,10237455825414473977524,523244238837133507448832,28177157277452320985386539
%N Number of forests with n labeled nodes and 6 trees.
%H Alois P. Heinz, <a href="/A240683/b240683.txt">Table of n, a(n) for n = 6..200</a>
%F a(n) = n^(n-12) * (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^5 + 40*n^4 + 835*n^3 + 10960*n^2 + 87636*n + 332640)/3840. - _Vaclav Kotesovec_, Sep 06 2014
%p T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1,
%p `if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)*
%p T(n-j, m-1), j=1..n-m+1))))
%p end:
%p a:= n-> T(n, 6):
%p seq(a(n), n=6..30);
%t Table[n^(n-12) * (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^5 + 40*n^4 + 835*n^3 + 10960*n^2 + 87636*n + 332640)/3840,{n,6,25}] (* _Vaclav Kotesovec_, Sep 06 2014 *)
%Y Column m=6 of A105599. A diagonal of A138464.
%K nonn
%O 6,2
%A _Alois P. Heinz_, Apr 10 2014