%I #10 Sep 06 2014 14:51:26
%S 1,10,105,1295,18865,320544,6258000,138437310,3428282880,94059655690,
%T 2833936641536,93055995703125,3308477732618240,126642365068676240,
%U 5193315990469140480,227160198500847385884,10557603840000000000000,519578655591970045435770
%N Number of forests with n labeled nodes and 4 trees.
%H Alois P. Heinz, <a href="/A240681/b240681.txt">Table of n, a(n) for n = 4..200</a>
%F a(n) = n^(n-8) * (n-3)*(n-2)*(n-1)*(n^3 + 21*n^2 + 202*n + 840)/48. - _Vaclav Kotesovec_, Sep 06 2014
%p T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1,
%p `if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)*
%p T(n-j, m-1), j=1..n-m+1))))
%p end:
%p a:= n-> T(n, 4):
%p seq(a(n), n=4..30);
%t Table[n^(n-8) * (n-3)*(n-2)*(n-1)*(n^3 + 21*n^2 + 202*n + 840)/48,{n,4,20}] (* _Vaclav Kotesovec_, Sep 06 2014 *)
%Y Column m=4 of A105599. A diagonal of A138464.
%K nonn
%O 4,2
%A _Alois P. Heinz_, Apr 10 2014