

A240657


Least k such that 2^k == 1 (mod prime(n)), or 0 if no such k exists.


2



0, 1, 2, 0, 5, 6, 4, 9, 0, 14, 0, 18, 10, 7, 0, 26, 29, 30, 33, 0, 0, 0, 41, 0, 24, 50, 0, 53, 18, 14, 0, 65, 34, 69, 74, 0, 26, 81, 0, 86, 89, 90, 0, 48, 98, 0, 105, 0, 113, 38, 0, 0, 12, 25, 8, 0, 134, 0, 46, 35, 47, 146, 51, 0, 78, 158, 15, 0, 173, 174, 44, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

The least k, if it exists, such that prime(n) divides 2^k + 1.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000


FORMULA

a(n) = A014664(n)/2 if A014664(n) is even, otherwise 0.


MATHEMATICA

Table[p = Prime[n]; s = Select[Range[p/2], PowerMod[2, #, p] == p  1 &, 1]; If[s == {}, 0, s[[1]]], {n, 100}]


CROSSREFS

Cf. A014664 (order of 2 mod prime(n)), A072936 (zero terms).
Sequence in context: A051111 A068558 A245058 * A262420 A240662 A188724
Adjacent sequences: A240654 A240655 A240656 * A240658 A240659 A240660


KEYWORD

nonn


AUTHOR

T. D. Noe, Apr 14 2014


STATUS

approved



