This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240609 Number of n-length words w over a 3-ary alphabet such that w is empty or a prefix z concatenated with letter a_i and i=1 or 0 < #(z,a_{i-1}) >= #(z,a_i), where #(z,a_i) counts the occurrences of the i-th letter in z. 2
 1, 1, 2, 5, 13, 35, 94, 254, 688, 1872, 5115, 14038, 38689, 107055, 297336, 828699, 2317098, 6498114, 18273861, 51521238, 145604868, 412407942, 1170507375, 3328570513, 9482518041, 27059673745, 77340925350, 221382318131, 634578781229, 1821388557507 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA a(n) ~ 29 * 3^(n+3/2) / (16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 16 2014 EXAMPLE a(3) = 5: 111, 112, 121, 122, 123. a(4) = 13: 1111, 1112, 1121, 1122, 1123, 1211, 1212, 1213, 1221, 1223, 1231, 1232, 1233. a(5) = 35: 11111, 11112, 11121, 11122, 11123, 11211, 11212, 11213, 11221, 11222, 11223, 11231, 11232, 11233, 12111, 12112, 12113, 12121, 12122, 12123, 12131, 12132, 12133, 12211, 12212, 12213, 12231, 12233, 12311, 12312, 12313, 12321, 12323, 12331, 12332. MAPLE a:= proc(n) option remember; `if`(n<3, [1, 1, 2][n+1],       ((87*n^5-380*n^4-95*n^3+848*n^2-76*n+96) *a(n-1)       +(n-1)*(29*n^4-117*n^3+228*n^2+404*n-528) *a(n-2)       -3*(n-1)*(n-2)*(29*n^3-59*n^2-34*n-96) *a(n-3))/       ((n-2)*(n+4)*(29*n^3-146*n^2+171*n-150)))     end: seq(a(n), n=0..35); CROSSREFS Column k=3 of A240608. Sequence in context: A291242 A097919 A160438 * A054657 A024576 A057960 Adjacent sequences:  A240606 A240607 A240608 * A240610 A240611 A240612 KEYWORD nonn AUTHOR Alois P. Heinz, Apr 09 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 06:47 EDT 2019. Contains 324218 sequences. (Running on oeis4.)