login
A240599
Expansion of A(x) = x*B'(x)*(B(x)-x)/B(x)^2 where B(x)/x is g.f. of A027307.
0
2, 10, 78, 694, 6570, 64450, 646870, 6596334, 68050578, 708277498, 7423267742, 78238452390, 828411940538, 8805333110194, 93899794491046, 1004158446353374, 10764586985847330, 115642794779838442
OFFSET
1,1
FORMULA
a(n) = sum(k=1..n, 2^k*binomial(n-1,n-k)*sum(i=0..k, i*(-1)^(i-k)*binomial(k,i)*sum(j=0..n, ((-1)^j*2^(n-j)*(2*n-j+i-1)!)/(j!*(n-j)!*(n-j+i)!)))).
A(x) = x*B'(x)*(B(x)-x)/B(x)^2 where B(x) = x*((2*sqrt((x+3)/x)* sin(asin((sqrt(x)*(x+18))/(x+3)^(3/2))/3))/3-1/3).
Recurrence: n*(2*n-1)*(10*n^3 - 47*n^2 + 57*n - 11)*a(n) = 2*(110*n^5 - 627*n^4 + 1045*n^3 - 234*n^2 - 666*n + 345)*a(n-1) + (n-2)*(2*n-5)*(10*n^3 - 17*n^2 - 7*n + 9)*a(n-2). - Vaclav Kotesovec, Apr 16 2014
a(n) ~ sqrt(70*sqrt(5)-150) * ((11+5*sqrt(5))/2)^n / (20*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 16 2014
Equivalently, a(n) ~ phi^(5*n - 2) / (2 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021
MATHEMATICA
Table[Sum[2^k*Binomial[n-1, n-k]*Sum[i*(-1)^(i-k)*Binomial[k, i]*Sum[((-1)^j*2^(n-j)*(2*n-j+i-1)!)/(j!*(n-j)!*(n-j+i)!), {j, 0, n}], {i, 0, k}], {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2014 after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=sum(2^k*binomial(n-1, n-k)*sum(i*(-1)^(i-k)*binomial(k, i)*sum(((-1)^j*2^(n-j)*(2*n-j+i-1)!)/(j!*(n-j)!*(n-j+i)!), j, 0, n), i, 0, k), k, 1, n)
CROSSREFS
Cf. A027307.
Sequence in context: A095789 A134980 A355471 * A367142 A212381 A098692
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Apr 08 2014
STATUS
approved