OFFSET
1,1
COMMENTS
Condition on odd prime p so that Q(Cp) is not rational over Q: p = 2q+1 where q = -1 (mod 4), q is squarefree, and any of 4p-q and q+1 is not square.
LINKS
Shizuo Endo and Takehiko Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan, Volume 25, Number 1 (1973), 1-167 (see Proposition 3.6 (i) p.18).
Akinari Hoshi, On Noether's problem for cyclic groups of prime order, arXiv:1402.3678 [math.NT], 2014 (see Proposition 3.1 (i) p.4 and Table 1 p.19).
MATHEMATICA
Select[Prime[Range[2, 300]], (q = (#-1)/2; SquareFreeQ[q] && Mod[q, 4] == 3 && !IntegerQ[Sqrt[4#-q]] && !IntegerQ[Sqrt[q+1]])&] (* Jean-François Alcover, Sep 22 2018 *)
PROG
(PARI) isok(p) = isprime(p) && ((q = (p-1)/2) && issquarefree(q) && ((q % 4) == 3) && (!issquare(4*p-q)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Apr 08 2014
STATUS
approved