This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240582 Largest absolute value of coefficient in the expression for the discriminant of a generic polynomial of degree n. 0
 1, 4, 27, 256, 3750, 77760, 1728720, 55494528, 1948916016, 146502720000, 9131329626090 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES B. L. van der Waerden, Modern Algebra, Ungar, NY, Vol. I, 1953, pp. 82-83. LINKS EXAMPLE For n=3, f(x) = a x^3 + b x^2 + c x + d, discriminant = b^2 c^2 - 4 a c^3 - 4 b^3 d + 18 a b c d - 27 a^2 d^2. The largest absolute value of a coefficient is 27. MAPLE f := proc(n) local x, a, i; maxnorm(discrim(add(a[i]*x^i, i=0..n), x)) end: # Roman Pearce, Aug 29 2014 MATHEMATICA n = 6; Table[List @@ Discriminant[Sum[a[j] x^j, {j, 0, i}], x] /. a[_] -> 1 //     Abs // Max, {i, n}] CROSSREFS Sequence in context: A301742 A050764 A302108 * A302836 A301335 A177379 Adjacent sequences:  A240579 A240580 A240581 * A240583 A240584 A240585 KEYWORD nonn,more AUTHOR Albert Lau, Apr 08 2014 EXTENSIONS a(9)-a(11) from Roman Pearce, Aug 29 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 13:43 EDT 2018. Contains 316236 sequences. (Running on oeis4.)