login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240582 Largest absolute value of coefficient in the expression for the discriminant of a generic polynomial of degree n. 0
1, 4, 27, 256, 3750, 77760, 1728720, 55494528, 1948916016, 146502720000, 9131329626090 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

B. L. van der Waerden, Modern Algebra, Ungar, NY, Vol. I, 1953, pp. 82-83.

LINKS

Table of n, a(n) for n=1..11.

EXAMPLE

For n=3, f(x) = a x^3 + b x^2 + c x + d, discriminant = b^2 c^2 - 4 a c^3 - 4 b^3 d + 18 a b c d - 27 a^2 d^2. The largest absolute value of a coefficient is 27.

MAPLE

f := proc(n) local x, a, i; maxnorm(discrim(add(a[i]*x^i, i=0..n), x)) end: # Roman Pearce, Aug 29 2014

MATHEMATICA

n = 6;

Table[List @@ Discriminant[Sum[a[j] x^j, {j, 0, i}], x] /. a[_] -> 1 //

    Abs // Max, {i, n}]

CROSSREFS

Sequence in context: A177885 A086783 A050764 * A177379 A052813 A218653

Adjacent sequences:  A240579 A240580 A240581 * A240583 A240584 A240585

KEYWORD

nonn,more

AUTHOR

Albert Lau, Apr 08 2014

EXTENSIONS

a(9)-a(11) from Roman Pearce, Aug 29 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 08:38 EST 2018. Contains 299330 sequences. (Running on oeis4.)