login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240577 Number of partitions of n such that the number of even parts is a part and the number of odd parts is not a part. 7
0, 0, 0, 0, 1, 1, 3, 4, 6, 10, 13, 18, 24, 35, 42, 61, 76, 102, 127, 168, 209, 271, 336, 424, 531, 661, 818, 1008, 1251, 1520, 1875, 2268, 2783, 3349, 4083, 4885, 5938, 7078, 8539, 10154, 12203, 14456, 17281, 20427, 24312, 28670, 33968, 39951, 47176, 55363 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Table of n, a(n) for n=0..49.

EXAMPLE

a(7) counts these 4 partitions:  4111, 322, 22111, 21111.

MATHEMATICA

z = 62; f[n_] := f[n] = IntegerPartitions[n];

Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]]], {n, 0, z}]  (* A240573 *)

Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}]  (* A240574 *)

Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}]  (* A240575 *)

Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] || MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240576 *)

Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}]  (* A240577 *)

Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}]  (* A240578 *)

Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}]  (* A240579 *)

CROSSREFS

Cf. A240573, A240574, A240575, A240576, A240578, A240579.

Sequence in context: A103000 A310001 A310002 * A074321 A253049 A167410

Adjacent sequences:  A240574 A240575 A240576 * A240578 A240579 A240580

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 10 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 22:47 EDT 2021. Contains 342971 sequences. (Running on oeis4.)