

A240563


Primes formed from concatenation of higher primes onto the previous entry until prime, starting from 2.


3



2, 23, 2311, 231131, 23113147, 23113147229, 23113147229251, 23113147229251577, 23113147229251577857, 23113147229251577857859, 23113147229251577857859911, 231131472292515778578599111123, 2311314722925157785785991111231223
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This generates a monotonically increasing sequence, nicely spread out, likely infinite. By altering the starting prime value, a family of such sequences can easily be generated.
Derived from A080155.  T. D. Noe, Apr 11 2014
From the first 155 points, with x = #digits, y = sequence pointer y~ A*x^B with (A, B) = (0.6624, 0.8106). This indicates a 100digit prime in the vicinity of y = 28 for example.  Bill McEachen, Apr 13 2014
Only from the first 100 entries, it would appear that an upper bound on the number of digits in a(n) is A092777(n).  Bill McEachen, Sep 15 2015


LINKS

Bill McEachen, Table of n, a(n) for n = 1..100


EXAMPLE

Begin from 2.
Next we try 23  it is prime, this sets next iteration (23 is the "constant" part), upon which we try higher primes.
Next we try 235  composite; next we try 237  composite; next we try 2311  prime, this sets next iteration (2311 now becomes the "constant" part), upon which we try higher primes.
Next we try 231113  composite; next we try 231117  composite; ...; next we try 231131  prime, this sets next iteration (231131 now becomes the "constant" part), upon which we try higher primes.
Next we try 23113147  prime, this sets next iteration (23113147 now becomes the "constant" part), upon which we try higher primes.


MAPLE

X:= 2: p:= 3: a[1]:= 2:
for i from 2 to 30 do
while not isprime(X*10^(1+ilog10(p))+p) do
p:= nextprime(p)
od:
X:= X*10^(1+ilog10(p))+p;
a[i]:= X;
p:= nextprime(p);
od:
seq(a[i], i=1..30); # Robert Israel, Sep 15 2015


MATHEMATICA

s[1] = 2; s[n_] := s[n] = Block[{d = Flatten[IntegerDigits /@ Array[s, n1]], p = NextPrime@s[n  1]}, While[! PrimeQ@ FromDigits@ Join[d, IntegerDigits@p], p = NextPrime@p]; p]; a[n_] := FromDigits@ Flatten[ IntegerDigits /@ Array[s, n]]; Array[a, 10] (* Giovanni Resta, Apr 09 2014 *)


PROG

(PARI) print1(N=2); p=3; for(n=2, 10, while(!isprime(eval(Str(N, p))), p=nextprime(p+1)); N=eval(Str(N, p)); p=nextprime(p+1); print1(", "N)) \\ Charles R Greathouse IV, Apr 09 2014


CROSSREFS

Cf. A069151 (variant).
Cf. A080155 (primes used in concatenation).
Sequence in context: A239811 A082963 A083759 * A067823 A114794 A090509
Adjacent sequences: A240560 A240561 A240562 * A240564 A240565 A240566


KEYWORD

nonn,base


AUTHOR

Bill McEachen, Apr 07 2014


EXTENSIONS

a(7)a(13) from Giovanni Resta, Apr 09 2014


STATUS

approved



