login
A240495
Number of partitions p of n such that the multiplicity of (max(p) - min(p)) is a part.
5
0, 0, 0, 1, 1, 1, 2, 2, 5, 5, 8, 10, 16, 19, 25, 33, 46, 53, 72, 89, 114, 141, 183, 217, 278, 339, 421, 510, 632, 759, 931, 1124, 1361, 1636, 1977, 2354, 2830, 3378, 4034, 4781, 5695, 6732, 7975, 9420, 11098, 13063, 15376, 18014, 21124, 24716, 28883, 33697
OFFSET
0,7
EXAMPLE
a(8) counts these 5 partitions: 431, 422, 3221, 32111, 22211.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; MemberQ[p, Count[p, Mean[p]]]], {n, 0, z}] (* A240491 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, Median[p]]]], {n, 0, z}] (* A240492 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, Min[p]]]], {n, 0, z}] (* A240493 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, Max[p]]]], {n, 0, z}] (* A240494 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, Max[p] - Min[p]]]], {n, 0, z}] (* A240495 *)
CROSSREFS
Sequence in context: A091609 A183563 A222706 * A304393 A325535 A345165
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 06 2014
STATUS
approved