login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240494 Number of partitions of n such that the multiplicity of the greatest part is a part. 5

%I

%S 0,1,0,1,3,4,6,8,13,18,27,36,51,67,92,120,162,208,276,352,457,579,743,

%T 931,1183,1474,1851,2293,2857,3515,4347,5320,6532,7955,9708,11762,

%U 14279,17224,20798,24986,30034,35935,43012,51274,61125,72617,86249,102120

%N Number of partitions of n such that the multiplicity of the greatest part is a part.

%e a(6) counts these 6 partitions: 51, 411, 321, 3111, 2211, 21111.

%t z = 60; f[n_] := f[n] = IntegerPartitions[n];

%t Table[Count[f[n], p_ /; MemberQ[p, Count[p, Mean[p]]]], {n, 0, z}] (* A240491 *)

%t Table[Count[f[n], p_ /; MemberQ[p, Count[p, Median[p]]]], {n, 0, z}] (* A240492 *)

%t Table[Count[f[n], p_ /; MemberQ[p, Count[p, Min[p]]]], {n, 0, z}] (* A240493 *)

%t Table[Count[f[n], p_ /; MemberQ[p, Count[p, Max[p]]]], {n, 0, z}] (* A240494 *)

%t Table[Count[f[n], p_ /; MemberQ[p, Count[p, Max[p] - Min[p]]]], {n, 0, z}] (* A240495 *)

%Y Cf. A240491 - A240495.

%K nonn,easy

%O 0,5

%A _Clark Kimberling_, Apr 06 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 12:28 EST 2021. Contains 341606 sequences. (Running on oeis4.)