login
A240490
Number of partitions of n containing m(5) as a part, where m denotes multiplicity.
5
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 11, 14, 21, 28, 40, 51, 73, 93, 126, 162, 215, 271, 357, 449, 578, 725, 923, 1146, 1447, 1788, 2232, 2747, 3403, 4160, 5123, 6234, 7620, 9236, 11227, 13540, 16381, 19678, 23682, 28348, 33969, 40501, 48346, 57449, 68302
OFFSET
0,9
EXAMPLE
a(12) counts these 11 partitions: 651, 552, 5421, 54111, 5331, 53211, 531111, 52221, 522111, 5211111, 51111111.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 1]]], {n, 0, z}] (* A240486 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 2]]], {n, 0, z}] (* A240487 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 3]]], {n, 0, z}] (* A240488 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 4]]], {n, 0, z}] (* A240489 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 5]]], {n, 0, z}] (* A240490 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 06 2014
STATUS
approved