login
A240488
Number of partitions of n containing m(3) as a part, where m denotes multiplicity.
5
0, 0, 0, 0, 1, 1, 2, 2, 5, 7, 11, 14, 21, 28, 40, 52, 73, 94, 127, 162, 216, 274, 357, 449, 579, 724, 920, 1142, 1439, 1777, 2216, 2720, 3368, 4114, 5056, 6144, 7506, 9081, 11028, 13284, 16052, 19259, 23157, 27677, 33139, 39467, 47060, 55854, 66355, 78506
OFFSET
0,7
EXAMPLE
a(8) counts these 5 partitions: 431, 332, 3221, 32111, 311111.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 1]]], {n, 0, z}] (* A240486 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 2]]], {n, 0, z}] (* A240487 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 3]]], {n, 0, z}] (* A240488 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 4]]], {n, 0, z}] (* A240489 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 5]]], {n, 0, z}] (* A240490 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 06 2014
STATUS
approved