login
A240487
Number of partitions of n containing m(2) as a part, where m denotes multiplicity.
5
0, 0, 0, 1, 2, 2, 3, 5, 7, 11, 15, 20, 29, 39, 51, 70, 92, 119, 157, 203, 259, 334, 424, 535, 678, 850, 1059, 1324, 1642, 2027, 2503, 3075, 3763, 4604, 5607, 6809, 8261, 9988, 12043, 14508, 17424, 20879, 24988, 29835, 35548, 42303, 50232, 59544, 70491, 83297
OFFSET
0,5
EXAMPLE
a(7) counts these 5 partitions: 421, 322, 3211, 22111, 211111.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 1]]], {n, 0, z}] (* A240486 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 2]]], {n, 0, z}] (* A240487 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 3]]], {n, 0, z}] (* A240488 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 4]]], {n, 0, z}] (* A240489 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 5]]], {n, 0, z}] (* A240490 *)
CROSSREFS
Sequence in context: A322429 A039894 A133225 * A066889 A214040 A077419
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 06 2014
STATUS
approved