login
Number of partitions p of n such that (sum of parts with multiplicity 1) >= (sum of all other parts).
5

%I #6 Apr 06 2020 19:23:47

%S 1,1,1,2,3,4,6,8,13,17,22,28,43,55,71,87,124,153,202,243,332,401,511,

%T 608,828,984,1236,1458,1903,2245,2826,3301,4245,4963,6119,7108,9064,

%U 10508,12837,14834,18584,21442,26150,30028,37139,42599,51356,58742,72370

%N Number of partitions p of n such that (sum of parts with multiplicity 1) >= (sum of all other parts).

%F a(n) + A240449(n) = A000041(n) for n >= 0.

%e a(6) counts these 6 partitions: 6, 51, 42, 411, 321, 3111.

%t z = 30; p[n_] := p[n] = IntegerPartitions[n]; f[p_] := f[p] = First[Transpose[p]];

%t ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] < n &], {n, 0, z}]] (* shows the partitions *)

%t Map[Length, t] (* A240448 *)

%t ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] <= n &], {n, 0, z}]] (* shows the partitions *)

%t Map[Length, t] (* A240449 *)

%t ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] == n &], {n, 0, z}]] (* shows the partitions *)

%t Map[Length, t] (* A240447 with alternating 0's *)

%t ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] > n &], {n, 0, z}]] (* shows the partitions *)

%t Map[Length, t] (* A240451 *)

%t ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] >= n &], {n, 0, z}]] (* shows the partitions *)

%t Map[Length, t] (* A240452 *)

%t (* _Peter J. C. Moses_, Apr 02 2014 *)

%Y Cf. A240448, A240447, A240449, A240451, A000041.

%K nonn,easy

%O 0,4

%A _Clark Kimberling_, Apr 05 2014