

A240445


Numbers of ways to place five indistinguishable points on an n X n square grid so that no four of them are vertices of a square of any orientation.


3



96, 4128, 52080, 373632, 1898064, 7604352, 25580016, 75208320, 198651024, 480768288, 1081848768, 2289041664, 4594218720, 8808178176, 16223664672, 28842649344, 49686723072, 83213333280, 135864971088, 216783321216, 338725852080, 519228378240, 782063802000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,1


COMMENTS

All elements of the sequence are multiples of 48.


LINKS

Heinrich Ludwig, Table of n, a(n) for n = 3..1000
Index entries for linear recurrences with constant coefficients, signature (11,55,165,330,462,462,330,165,55,11,1).


FORMULA

a(n) = (n^10  10*n^8 + 25*n^6  16*n^2)/120.
G.f.: 48*x^3*(x+1)*(2*x^4+62*x^3+187*x^2+62*x+2) / (x1)^11.  Colin Barker, May 09 2014


MAPLE

A240445:=n>(n^10  10*n^8 + 25*n^6  16*n^2)/120; seq(A240445(n), n=3..30); # Wesley Ivan Hurt, May 09 2014


MATHEMATICA

Table[(n^10  10*n^8 + 25*n^6  16*n^2)/120, {n, 3, 30}] (* Wesley Ivan Hurt, May 09 2014 *)


PROG

(MAGMA) [(n^10  10*n^8 + 25*n^6  16*n^2)/120: n in [3..30]]; // Wesley Ivan Hurt, May 09 2014


CROSSREFS

Cf. A240444, A240446.
Sequence in context: A008660 A164751 A272765 * A229458 A285171 A239182
Adjacent sequences: A240442 A240443 A240444 * A240446 A240447 A240448


KEYWORD

nonn,easy


AUTHOR

Heinrich Ludwig, May 09 2014


STATUS

approved



